Overview

- What is SNMP?
- Polling and querying
- OIDs and MIBs
- Notifications
- SNMPv3
What is SNMP?

SNMP – Simple Network Management Protocol
- Structured protocol, structured information
- For querying network device state and receiving notifications
- Also can be used to change state
- Industry standard, hundreds of tools exist that use it
- Supported on any decent network equipment
- Transport: UDP ports 161 and 162 (notifications)
Uses for SNMP

Typical queries
- Bytes In/Out on an interface, errors
- CPU load
- Uptime
- Temperature or other vendor specific OIDs

For hosts (servers or workstations)
- Disk space
- Installed software
- Running processes
- ...

Windows and UNIX have SNMP agents
SNMP Versions

v1 (1988) Original specification
 - Historic

v2 (1996) Failed Standard
 - Security+new data types+new operators
 - 64-bit counters, get-bulk, v2 notifications
 - View-based access control model (VACM) introduced
 - Historic, no current implementations left

v2c (1996) De facto standard
 - v2 data types and operators
 - v1 security (community string) (simple security model)
 - Historic

v3 (1998) Robust security
 - User/view based security (USM/VACM)
 - Full Internet Standard

We will use SNMP v2c and v3 in this class
SNMP roles

Terminology—We will be using Manager and Agent

Manager (the monitoring station)
- Sometimes known as the SNMP client
- SNMPv3 calls it the Command Generator and Notification Receiver

Agent (running on the equipment/server)
- Sometimes known as the SNMP server
- SNMPv3 calls it the Command Responder and Notification Originator
How does SNMP work?

Basic operators

- **get** (manager -> agent)
 - Query for a value
- **getnext** (manager -> agent)
 - Get next value (e.g. list of values for a table)
- **getresponse** (agent -> manager)
 - Response to **get**, **getnext**, or **set**, includes error returns
- **set** (manager -> agent)
 - Set a value, or perform an action
- **trap** (agent -> manager)
 - Spontaneous notification from equipment (line down, temperature above threshold, ...)

The above operators are used to query and control network devices.
How does SNMP work?

Query/response based
- Monitoring generally uses get, getnext, getbulk
- Changing state uses set
- Response is always a getresponse
- getbulk requires v2c or v3

Notifications are delivered as traps or informs
- traps are unacknowledged
- informs are acknowledged (v2c, v3)
- Use v2c format traps
- No one uses informs
The SNMP database

The information offered by a device is available in its Management Information Base (MIB)

- SNMP uses Object Identifiers (OIDs) to organize this information
- OIDs are keys to identifying each piece of data
- OIDs are organized into a tree structure that is the MIB
- MIB files document parts of the MIB on a device
OIDs

OID: Object Identifier

- A unique key to select a particular item of data in the device
- The same piece of information is always found at the same OID. That's simple!
- An OID is a variable-length string of numbers, e.g.
 \[.1.3.6.1.2.1.1.3\]
- Allocated hierarchically in a tree to ensure uniqueness (*similar to DNS*)

UNIVERSITY OF OREGON

Network Startup Resource Center
If Email Addresses were OIDs

user@nsrc.org

would have been something like:
user@nsrc.enterprises.private.internet.dod.org.iso
user@99999.1.4.1.6.3.1

except that we reverse the ordering, putting iso(1) first:
.1.3.6.1.4.1.99999.117.115.101.114

Note the portion after 99999—it spells “user” in ascii dotted decimal!

Don't worry about the deeply branched tree. What matters is that OIDs are unique.

- Ensures vendors don't have conflicting OIDs
- The numeric OID is what gets sent on the wire
OIDs and MIB files

Read from left to right
OID components separated by '.

.1.3.6.1.4.1.9. ...

Each OID corresponds to a label

.1.3.6.1.2.1.1.5 => sysName

The complete path:

.iso.org.dod.internet.mgmt.mib-2.system.sysName

How do we convert from OIDs to Labels (and vice versa)?

• Use the MIBs files!
The MIB Tree

Root(.)
 ccitt(0)
 iso(1)
 org(3)
 dod(6)
 internet(1)
 directory(1) mgmt(2) experimental(3)
 1.3.6.1
 mib-2(1)
 system(1)
 interfaces(2)
 ip(4)
 snmp(11)
 private(4)
 enterprises(1)
 cisco(9)
The MIB Tree
Interesting parts of the MIB tree

The Internet MIB, .1.3.6.1, really only two branches of interest:

- Standard MIBs
 .1.3.6.1.2.1 = .iso.org.dod.internet.mgmt.mib-2

- Vendor-specific (proprietary) MIBs
 .1.3.6.1.4.1 = .iso.org.dod.internet.private.enterprises

The IEEE has MIBs of interest in three parts of the tree:

- IEEE 802 MIBs, including LLDP
 .1.0.8802 = .iso.standard.iso8802

- IEEE 802.3 MIBs, including LAG
 .1.2.840.10006 = .iso.member-body.us.ieee802dot3

- IEEE 802.11 wireless MIBs
 .1.2.840.10036 = .iso.member-body.us.ieee802dot11
MIB Files

MIB files define the objects that can be queried, including:

- Object name
- Object description
- Data type (integer, text, list)

MIB files are structured text

- using an ASN.1 subset called the Structure of Management Information (SMI)

Standard MIB files include:

- MIB-II – (RFC1213) – a sub-group of MIBs
- HOST-RESOURCES-MIB (RFC2790)
MIB Sample

sysUpTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The time (in hundredths of a second) since the network management portion of the system was last re-initialized."
 ::= { system 3 }

sysUpTime OBJECT-TYPE
This defines the object called sysUpTime.

SYNTAX TimeTicks
This object is of the type TimeTicks. Object types are specified in the SMI we mentioned a moment ago.

ACCESS read-only
This object can only be read via SNMP (i.e., get, getnext); it cannot be changed (i.e., set).

STATUS mandatory
This object must be implemented in any SNMP agent.

DESCRIPTION
A description of the object

 ::= { system 3 }
The sysUpTime object is the third branch off of the system object group tree.
MIB Files

MIB files also make it possible to interpret a returned value from an agent

• For example, the status for a fan could be:
 - 1, 2, 3, 4, 5, or 6
 - What does it mean?

• Look for the Textual Convention (tc) in the MIB
CiscoEnvMonState ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Represents the state of a device being monitored. Valid values are:

normal(1): the environment is good, such as low temperature.

warning(2): the environment is bad, such as temperature above normal operation range but not too high.

critical(3): the environment is very bad, such as temperature much higher than normal operation limit.

shutdown(4): the environment is the worst, the system should be shutdown immediately.

notPresent(5): the environmental monitor is not present, such as temperature sensors do not exist.

notFunctioning(6): the environmental monitor does not function properly, such as a temperature sensor generates a abnormal data like 1000 C."
SNMP and Security

SNMP versions 1 and 2c are insecure
SNMP version 3 was created to fix this

SNMPv3 authentication is based on a user
• “User-based Security Model” (USM)
 – Authenticity and integrity
 – Keys are used for users and messages have digital signatures generated with a hash function (MD5 or SHA)
 – Privacy
 – Messages can be encrypted with secret-key (private) algorithms (DES or AES)
 – Temporary validity
 – Utilizes a synchronized clock with a 150 second window with sequence checking
SNMPv3 Security Levels

noAuthNoPriv
- No authentication, no privacy

authNoPriv
- Authentication with no privacy

authPriv
- Authentication with privacy
Cisco SNMP Configuration

Read-only

```
snmp-server community NetManage RO
- Enables SNMPv1 and v2c
snmp-server group ReadGroup v3 auth
snmp-server user admin ReadGroup v3 auth sha NetManage
- SNMPv3 authentication, no encryption
```

Read-write

```
snmp-server group WriteGroup v3 auth write v1default
snmp-server user admin-rw WriteGroup v3 auth sha NetManage priv aes 128 NetWrite
- Cisco allows authNoPriv and authPriv queries with this user
- You could also define a read-write user without encryption (priv)
- Note that we recommend using SNMP version 3 if you want write access using the set operator
```
Net-SNMP Configuration

Add a community string by editing `/etc/snmp/snmpd.conf` and adding:

```
rocommunity NetManage  10.10.0.0/16
```

Add the SNMPv3 user

```
# service snmpd stop
# net-snmp-create-v3-user -a SHA -A NetManage admin
# service snmpd start
```

Modify your user configuration file `~/.snmp/snmp.conf`, adding:

```
defVersion 3
defCommunity NetManage
defSecurityName admin
defSecurityLevel authNoPriv
defAuthPassphrase NetManage
defAuthType SHA
```
Querying an SNMP agent

Using Net-SNMP command line tools...

Some typical commands for querying:

- snmpget
- snmpwalk
- snmpbulkwalk (requires v2c or v3)
- snmpstatus
- snmptable

Syntax:

```
snmpXXX -v1 -c<community> host [OID]
snmpXXX -v2c -c<community> host [OID]
snmpXXX -v3 -lauthNoPriv -u<user> -aSHA -A<pass> host [OID]
```

However, because you've setup the snmp.conf file, it's much easier

```
  snmpxxx host [OID]
  - Or, if you want to force the version to v2c, for example:
    snmpxxx -v2c host [OID]
```
Querying an SNMP agent

Let's look at some examples

```
snmpstatus 10.10.0.254
snmpget 10.10.0.254 ifNumber.0
snmpwalk -v2c 10.10.0.254 ifDescr
```
Querying an SNMP agent

Community:
- A "security" string (password) to define whether the querying manager will have RO (read only) or RW (read write) access
- This is the simplest form of authentication in SNMP

OID
- A value, for example, \[.1.3.6.1.2.1.1.5.0\]
- or its name equivalent: `sysName.0`

Let's ask for the system's name (using the OID above)
- Why the \[.0\]? What do you notice?
Queries Using snmp.conf

Two walks:

snmpwalk 10.10.0.252 sysUpTime
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (1946738) 5:24:27.38

snmpwalk -v2c 3 10.10.0.252 sysUpTime
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (1953429) 5:25:34.29

First walk used SNMPv3 as it was the default in snmp.conf, second walk specified SNMPv2c, and used the community string from snmp.conf.
Failed Query...Why?

Two gets:
snmpget -v1 10.10.0.252 ifHCInOctets.1
Error in packet
Reason: (noSuchName) There is no such variable name in this MIB.
Failed object: IF-MIB::ifHCInOctets.1

snmpget 10.10.0.252 ifHCInOctets.1
IF-MIB::ifHCInOctets.1 = Counter64: 475028252

Why? Notice the data type: Counter64. 64-bit counters are only supported in SNMPv2c and v3.

64-bit counters are important because 32-bit interface counters (ifInOctets) can wrap in 34 seconds on Gig interfaces.

How fast can it wrap on 10G?
SNMP failure: no response?

The device might be offline or unreachable
The device might not be running an SNMP agent
The device might be configured with a different community string
The device might be configured to refuse SNMP queries from your IP address

In all of these cases you will get no response
SNMP Best Practices

• Secure your SNMP access and traffic:
 – Management VLAN
 – Access lists
 – Use SNMPv3 with authentication for queries and sets where possible

• Use SNMPv2c traps
 – Better formatted than v1 traps
 – Accurate timestamps

• Do no harm
 – Only poll as fast as you really need
 – Possible to drive CPU load on devices up and affect other protocol processing
 – It does no good to poll every 5 seconds if the device updates the counter every 10
Coming up in our exercises...

- Using `snmpwalk, snmpget`
- **Config file:** `/etc/snmp/snmp.conf`

- Running Linux SNMP agent (daemon)
- **Config file:** `/etc/snmp/snmpd.conf`

- Loading MIBs
References

Essential SNMP (O'Reilly Books) Douglas Mauro, Kevin Schmidt

Wikipedia

MIB/ OID Browser
 • http://oid-info.com/

Cisco SNMP on IOS, MIB tools, and MIB/ OID browser
 • http://tools.cisco.com/ITDIT/MIBS/servlet/index

Open Source Java MIB Browser
 • http://www.dwipal.com/mibbrowser.htm

SNMP Link – collection of SNMP resources
 • http://www.snmplink.org/

Net-SNMP Open Source SNMP tools
 • http://net-snmp.sourceforge.net/

Integration with Nagios
SNMP Versions

v1 Original specification
 RFCs 1155,1157,1213

v2 Security+new data types+new operators
 RFCs 1901,1909-1910,2011,2576,2578-2580,3416-3418

v2c De facto standard
 Documented in RFC 3584

v3 Robust security: USM/VACM
 RFCs 3411-3415,3417-3418,3826,5343,5345,5590

RFC 3584 specifies coexistence between versions